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In the smoothed particle hydrodynamics (SPH) discretisation method for the Navier–
Stokes equations the most widespread method to solve for pressure and mass conservation
is the weakly compressible assumption (WCSPH). This includes hydraulics applications and
leads to some drawbacks such as severe artificial pressure fluctuations and a limitation to
very small time steps related to the WCSPH Mach number and explicit method. This paper
presents comparisons of a semi-implicit and truly incompressible SPH (ISPH) algorithm
with the classical WCSPH method, showing how some of the problems encountered in
WCSPH have been resolved by using ISPH to simulate incompressible flows. Mathematical
models are presented before describing SPH formalism. Several standard boundary condi-
tions are introduced and special attention is given to tracking the surface particles. The lid-
driven cavity flow (Re = 400 and 1000) is performed as a benchmarking test. A bluff body
test case (a square cylinder in a closed channel, Red = 20 and 100 based on the cylinder
diameter) shows that pressure fields extracted from WCSPH are very unreliable whereas
ISPH predict pressures and forces in closer agreement with classical finite volume CFD
methods. Dam-breaking cases, with dry or wet beds downstream, are then presented to
highlight free-surface flow and rapid dynamics effects. The WCSPH and ISPH results are
generally verified with reference data from experiment and/or another numerical method.
All the comparisons show improvement with ISPH and good agreement in general.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Smoothed particle hydrodynamics (SPH) is a fully Lagrangian method, which does not require the use of any mesh. It was
originally invented to simulate astrodynamics [13]. Since then the use of SPH has expanded in many areas of solid and fluid
dynamics (involving large deformations, impacts, free-surface and multiphase flows). A major advantage of SPH over Eule-
rian methods is the ability to capture very complex interfaces without any special front tracking treatment. When modelling
incompressible flows, traditional SPH solvers resort to a weakly compressible approach (hereafter referred to as WCSPH).
The advantage is that it is easy to programme because the pressure is obtained from an algebraic thermodynamic equation
[14] and diffusion terms are treated as explicit. However, some drawbacks appear. Firstly, WCSPH requires a very small time
step associated with a numerical speed of sound which is at least 10 times higher than the maximum of velocity. Secondly,
small density errors always remain causing significant non-physical pressure fluctuations which can yield numerical insta-
bility. Circumventing those problems can be achieved by using truly incompressible SPH (hereafter referred to as ISPH).
. All rights reserved.
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Pressure and viscous forces are treated separately, the pressure being calculated by enforcing a divergence-free velocity field
[4]. The pressure is thus no longer a dependent variable but is computed from a pressure Poisson equation.

The work presented here uses the SPARTACUS-2D code as a starting point, a code initially developed at the ‘‘Laboratoire
National d’Hydraulique et d’Environnement” of EDF (Electricité de France) since 1998 by Violeau and Issa (see [7]) with the
WCSPH formulation.

In this paper, weakly compressible and truly incompressible algorithms are introduced followed by the SPH formulations,
with free-surface and solid wall boundary conditions. Test cases consist of a 2-D lid-driven cavity flow, a flow around a bluff
body, and finally several dam-break applications.

2. Governing equations and numerical schemes

In this section, the numerical methods used to solve the equations for incompressible flows of Newtonian fluids are de-
scribed; SPH notations and tools are introduced in Section 3.

2.1. Weakly compressible algorithm

A classical method which solves weakly compressible equations in primitive variables (density q, velocity u) is presented
in this subsection. As a result, the Lagrangian Reynolds-Averaged Navier–Stokes equations read
1
q

dq
dt
þr � �u ¼ 0 ð1Þ

d�u
dt
¼ � 1

q
r�pþr � mEr�uð Þ þ Fe ð2Þ
where q is the density, �u is the Reynolds averaged velocity vector, t the time, �p the Reynolds-averaged pressure, mE=m + mT the
effective viscosity, m being the kinematic viscosity and mT the turbulent viscosity, and Fe an external force such as gravity for
instance. Every vector quantity is written in bold. ‘‘r” and ‘‘r�” are respectively gradient and divergence operators. The over-
strike bar indicates Reynolds averaging.

The system composed of Eqs. (1) and (2) is closed by a relation between q and �p taking the form of an appropriate equa-
tion of state for water:
�p ¼ q0c2
0

c
q
q0

� �c

� 1
� �

ð3Þ
where c = 7, q0 is a reference density and c0 is a numerical speed of sound which is normally taken 10 times higher than the
maximum fluid velocity in order to reduce the density fluctuation down to 1% [14]. Due to the power coefficient c, small
density fluctuations lead to large pressure fluctuations but the noise induced in the pressure field does not generally con-
taminate the flow evolution. This approach tends to keep the particle distances roughly constant by imposing a repelling
force to a pair of particles when they come too close to each other.

The scheme is first order and fully explicit in time. The following equations give the sequence of the WCSPH algorithm.
The velocity is calculated as
�unþ1 ¼ �un þ � 1
q
r�pn þr � mEr�unð Þ þ Fe

� �
Dt ð4Þ
where superscripts n and n + 1 indicate, respectively, previous and present time steps and Dt is the numerical time step.
Position and density are updated at the next time step by
rnþ1 ¼ rn þ �unþ1Dt; qnþ1 ¼ qn � qnðr � �unþ1ÞDt ð5Þ

Finally, the pressure is obtained from Eq. (3) with the updated density.

2.2. Truly incompressible algorithm

The truly incompressible approach dealing with pressure and velocity as primitive variables is presented in this section.
The density is constant and Eq. (1) reduces to
r � �u ¼ 0 ð6Þ

The classical projection method [2,21] is used to solve the velocity–pressure coupling problem. The discretised form of Eq.
(2) is split into two parts: the first being the prediction step based on viscous and gravity forces:
�u� � �un

Dt
¼ r � ðmEr�unÞ þ Fe ð7Þ
and the latter the correction step based on pressure force:
�unþ1 � �u�

Dt
¼ � 1

q
r�pnþ1 ð8Þ
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where �u� is an auxiliary velocity. In the prediction step, Eq. (7) can be rewritten as
�u� ¼ �un þ ðr � ðmEr�unÞ þ FeÞDt ð9Þ
The auxiliary velocity field �u� is usually not divergence free but this is imposed upon �unþ1. Hence, the auxiliary velocity is
projected on the divergence-free space by writing the divergence of Eq. (8) as
r �
�unþ1 � �u�

Dt

� �
¼ �r � 1

q
r�pnþ1

� �
ð10Þ
With the condition of incompressibility on �unþ1, this leads to the following pressure equation:
r � 1
q
r�pnþ1

� �
¼ r �

�u�

Dt
ð11Þ
Since a constant density is considered here, Eq. (11) can be rewritten as
r2�pnþ1 ¼ q
Dt
r � �u� ð12Þ
where r2 is the Laplacian operator.
Once pressure is obtained from Eq. (12), the velocity is updated by the computed pressure gradient:
�unþ1 ¼ �u� � 1
q
r�pnþ1

� �
Dt ð13Þ
Finally, particles move only with this corrected velocity by the relation given by Eq. (5). One should note that the updated
velocity �unþ1 is divergence free only within the spatial truncation error due to the method of solving Eq. (12) (see Section
3.2). It hence produces errors in particle positions, however, this error is still less than that of the WCSPH method [4].

3. SPH formulations

3.1. Core of SPH

In physical space, fluid can be discretised by a finite number of macroscopic volumes of fluid. In SPH, a particle a repre-
sents a macroscopic volume of fluid. Each fluid particle, for example particle a, carries information of a mass ma, a density qa,
a pressure pa, a velocity ua, a position ra and other quantities depending on the nature of the flow and of the fluid. The mass is
constant through the simulations, however, pressure, velocity, position and other physical quantities are updated every time
step. Density is also updated every time step in WCSPH whereas constant density is set in ISPH.

A basic principle in SPH is that a quantity a can be expressed in terms of a convolution product of a and the Dirac dis-
tribution d over the whole domain as
aðrÞ ¼
Z

X
aðr0Þdðr� r0Þdr0 ð14Þ
where X is the volume of the fluid domain, and dr
0

an elementary volume. The Dirac distribution can be approximated in
discrete sense by a kernel function wh with smoothing length h, which allows any quantity to be expressed in terms of
its values known at different particle locations [11,6,12]. More precisely, any quantity a attached to a particle ‘‘a” at a posi-
tion ra is written as
aðraÞ �
X

b

mb

qb
abwhðrabÞ ð15Þ
where the subscript ‘‘b” is used to describe any particle in the neighbourhood of particle ‘‘a”. The distance from ‘‘a” to ‘‘b” is
rab(=jrabj), ab denotes the value of any quantity a at rb and the summation applies to all the particles, with the volume dr

0
in

Eq. (14) replaced by the particle volume mb
qb

in Eq. (15). According to Morris et al. [15], a kernel function wh can be written in a
general manner as
whðrabÞ ¼
1
hr f

rab

h

� �
ð16Þ
where r is the dimension of the system and the smoothing length h is proportional to the particle distance, which plays a
role similar to the mesh size in Eulerian codes. As shown in Eq. (16), the kernel only varies with the distance rab between
particles, which ensures angular momentum conservation [13]. The kernel has to be at least C1 for numerical consistency
[13].

The gradient of a is then expressed as a function of a and the kernel derivatives as
raðraÞ �
X

b

mb

qb
abrawhðrabÞ ð17Þ
where the quantity rawh(rab) denotes the gradient of the kernel, which is taken as centered on the position of particle a.
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Note that various ways exist to express gradients in continuous form, i.e.,
ra ¼ 1
q
ðrðqaÞ � arqÞ ð18Þ
or
ra ¼ q r a
q

� �
þ a

q2rq
� �

ð19Þ
which leads to different discrete SPH forms. For instance, combining Eqs. (17) and (18) gives the following SPH form:
raðraÞ �
1
qa

X
b

mbðab � aaÞrawhðrabÞ ð20Þ
and with Eqs. (17) and (19):
raðraÞ � qa

X
b

mb
aa

q2
a
þ ab

q2
b

� �
rawhðrabÞ ð21Þ
Here, Eq. (20) is symmetric and (21) is asymmetric when a and b are swapped. The second form ensures linear momentum
conservation [13] and is used for pressure gradient.

However, since q is constant for each particle (qa = qb) for truly incompressible flow, Eqs. (20) and (21) are identical to Eq.
(17). As a proof, since qa = qb = q0, the right hand side of Eq. (21) can be split in two parts:
qb

X
b

mb
aa

q2
b

rawhðrabÞ þ qb

X
b

mb
ab

q2
b

rawhðrabÞ ð22Þ
Then it reduces to
aa

X
b

mb

qb
rawhðrabÞ þ

X
b

mb

qb
abrawhðrabÞ ð23Þ
If the kernel is built in such a way that for a constant field a, ra = 0 holds, then one has
X
b

mb

qb
rawhðrabÞ ¼ 0 ð24Þ
The first term of Eq. (23) then vanishes, which leads to the SPH formalism as Eq. (17). However, in the following, the kernel
used here does not satisfy exactly the condition given by Eq. (24), thus Eq. (20) or Eq. (21) is kept to estimate gradients. What
holds for gradient also holds for divergence. One example of each operator follows: the gradient of pressure can be expressed
as
r�pa � qa

X
b

mb
�pb

q2
b

þ
�pa

q2
a

� �
rawhðrabÞ ð25Þ
and the divergence of velocity is
r � �ua � �
1
qa

X
b

mb �uab � rawhðrabÞ ð26Þ
with �uab ¼ �ua � �ub. Note that other forms of gradient or divergence exist. Some of them are presented in [13].
The viscous term is not directly built as divergence of gradient, but as a combination of the finite difference approach and

SPH formalism. For instance, the viscous term by Cleary and Monaghan [3] reads
r � mEr�uað Þ �
X

b

mb 8
mE;a þ mE;b

qa þ qb

�uab � rab

r2
ab þ g2

� �
rawhðrabÞ ð27Þ
and by Morris [15] is
r � mEr�uð Þa �
X

b

mb
qamE;a þ qbmE;b

qaqb

rab � rawhðrabÞ
r2

ab þ g2

� �
�uab ð28Þ
where mE,a = ma + mT,a and g2 = 0.01h2 is a parameter to avoid a zero denominator. As pointed out by Morris et al., this term
performs better for laminar flows [15]. However, Monaghan’s term is retained for the simulations presented in the following
since the results from both methods show little difference [7]. For turbulent flows, the turbulent viscosity mT,a is estimated
through turbulence closures such as mixing length (lm), one equation (k � lm) or two equations (k–�) models. The detail of
these turbulence closures as implemented in the SPARTACUS-2D code are presented in [22].
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The time step Dt is chosen by the same expression for WCSPH and ISPH, i.e., the minimum of three conditions, the CFL
condition, and the mass and viscous force conditions such that
Dt ¼min 0:4
h
j�uref j

;0:25 min
a

ffiffiffiffiffiffiffi
h
jfaj

s
; 0:125 min

a

h2

mE;a

 !
ð29Þ
where fa is the force per unit mass, equivalent to the magnitude of particle acceleration, and j�uref j is the reference velocity,
which will be respectively the numerical speed of sound c0 and maximum fluid velocity j�umaxj for WCSPH and ISPH.

3.2. Pressure Poisson equation

Cummins et al. [4] described two approaches to solve the pressure equation, the first by an exact discretisation of the
Laplacian and the second by an approximation to it. They observed that using an exact Laplacian formulation shows a check-
er-board effect similar to the one observed in an Eulerian approach with a collocated arrangement of the pressure and veloc-
ity. To circumvent this problem, an approximate Laplacian operator with the same form as a diffusion term (i.e., analogous to
Eq. (28), see [23] for coding details) is used and reads
r2�pa �
2
qa

X
b

mb
�pabrab � rawhðrabÞ

r2
ab þ g2

ð30Þ
where �pab ¼ �pa � �pb.
The linear system is solved by the Bi-CGSTAB method [25] without pre-conditioning.
The residual (R)a is defined as (R)a = (B)a � (Lp)a, where ðBÞa ¼ ðqr � �u�=DtÞa and ðLpÞa ¼ ðr2�pÞa. The convergence is ob-

tained when
kRk2

kR0k2
< 10�2 ð31Þ
where R0 is the initial residual and k �k2 the l2-norm calculated as
kRk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXN

a¼1

R2
a

vuut ð32Þ
where N is the number of particles. The convergence criterion can be further adjusted to suit the applications.

3.3. Boundary conditions

Flows of interest in this paper are either periodic in the streamwise direction, or have a free-surface, or are wall-bounded.
Periodic boundary conditions are straightforward, the particles going out of the domain through one side being re-injected
through the opposite side. For free-surface treatment, zero pressure needs to be applied in ISPH while the pressure is ob-
tained by the knowledge of density [14] in WCSPH. Surface particle tracking, which is a key point in ISPH for free-surface
flow, is investigated in Section 3.3.2. At a wall, Dirichlet boundary conditions apply to velocity and Neumann conditions
should be applied to pressure in both methods (see [24] in terms of WCSPH). Difficulties in ISPH arise when pressure wall
boundary conditions need to be set together with Dirichlet boundary conditions on the velocity.

3.3.1. The use of dummy particles
Unlike finite differences where skewed discretisations can be introduced near a wall to retain the same order (high order

backward differencing), SPH has a large isotropic stencil which becomes truncated near a wall. With a crude discretisation
we observe that particles can penetrate and even cross the walls. There are several ways to prevent this phenomenon, for
example, by using mirror particles [4] or some repulsive forces [14], or dummy particles [19]. Mirror particles are set either
symmetrically or asymmetrically to fluid particle positions and have a non-zero velocity. On corners or curved surfaces these
particles no longer have homogeneous distribution of spacing which leads to large density variations. With repulsive forces,
only one layer of particles is placed on the wall, and as indicated by the name, they exert very large repulsive forces to pre-
vent fluid particles from crossing the walls. The order of the scheme is then degraded and particles tend to ‘‘wobble” when
moving parallel to the wall. Among these techniques, dummy particles are used here. They are regularly distributed at the
initial state and have zero velocity through the whole simulation, while several layers of dummy particles [19] are built as an
extension of the edge particles surrounding the solid boundaries to ensure the same order of discretisation (in terms of ker-
nel compact support) for particles located close to those boundaries, as for particles located in the core of the domain. This
also makes the coding simpler (e.g., for parallelisation) as the same scheme is used for all particles with the only difference
that wall particles are not displaced at the end of the time step. The number of dummy particle layers is decided from the
radius of the compact support (i.e., such that the stencil is not truncated for the near-wall particles). In the following
simulations, four layers of dummy particles are built. Dummy particles do not move but carry an identical pressure to edge
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particles normal to the wall (see Fig. 1). To illustrate the use of dummy particles, two types of wall configurations are shown:
the first where the dummy particles are in the outer corner (see Fig. 1(a)) and the second for the inner corner (Fig. 1(b)).
There is no special treatment when outer corners are considered in contrast to what happens at inner corners where two
pressure fields overlap with the presence of the two perpendicular walls. To circumvent this problem in this work, the diag-
onal particles carry the same information as the average of their four neighbouring particles. The influence of the dummy
particles on the solution is examined in the following subsection.

3.3.2. Surface particle tracking
No dummy particles are used to set the free-surface boundary conditions. For that reason, the number of neighbouring

particles are smaller than what it should be since the support of the kernel is truncated (see Fig. 2). This property is used
to define the free surface and to impose zero pressure on the surface particles. Divergence of a particle position in SPH reads
Fig. 1.
square
r � r ¼
X

b

mb

qb
rab � rawhðrabÞ ð33Þ
This is equal to 2 for 2-D simulations in the core of the domain and much below 2 for surface particles. Hence, a criterion set
to 1.5 is used to determine which particles belong to the surface (see Eq. (33)). The dam-breaking case (see Section 6 for a
more complete description) is used to illustrate the method. The identified surface particles are shown in Fig. 3 at different
times. Most surface particles at the surface are identified but not all of them, this defect is acceptable, as the undetected sur-
face particles still have a pressure very close to zero. However, this could be further improved.
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Fig. 2. Zoom of a free surface. Description of the kernel compact support for a surface particle.

Fig. 3. Examples of surface particle tracking defect (dam-breaking case, top left: t = 0.186 s, top right: t = 0.278 s, bottom left: t = 0.650 s, bottom right:
t = 1.860 s).
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4. Lid-driven cavity flow

The lid-driven cavity flow has been widely used as a benchmarking test case for various numerical methods in the last
decades and is thus suitable for testing the WCSPH and ISPH algorithms. Two different Reynolds numbers, based on the
lid velocity and the size of the cavity, namely 400 and 1000, are studied and results are compared to Ghia et al. data [5]
and to a finite volume based software (STAR-CD) data. The last data is referred to as FV.

4.1. Simulation conditions

This case is purely numerical and the cavity size L, the lid velocity ULid and the density q are set to unity, such that m ¼ 1
Re.

The lid wall and solid walls consist of a layer of edge particles and four layers of dummy particles. The lid moves at a constant
velocity. The configuration of the geometry is shown in Fig. 4. Three different initial fluid particle distributions are presented
for WCSPH and ISPH at Re = 400, with initial distances dr between closest neighbouring particles of L/40, L/70 and L/100. At
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Fig. 4. 2-D lid-driven cavity flow configuration. Geometry (L is the cavity size, VX horizontal velocity, VZ vertical velocity) and lid velocity (ULid).
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Re = 1000, seven different initial fluid particle distributions are presented for both WCSPH and ISPH, starting from the coars-
est one with dr = L/20. The other distributions are respectively based on dr = L/40, dr = L/80, dr = L/120, dr = L/160, dr = L/200,
and finally dr = L/240.

In terms of SPH parameters, a fourth order of kernel [15] with a smoothing length ratio h/dr of 1.3 is used in both WCSPH
and ISPH. The numerical speed of sound in WCSPH is set at c0 = 100 ULid instead of the normal definition of speed of sound
c0 = 10ULid in order to cure the appearance of a void at the center of the cavity; this phenomenon having already been re-
ported in [8]. In the following simulations, dummy particles are involved in the Laplacian operator. The right hand side of
Eq. (12) for edge particles is the same as for fluid particles instead of zero.

FV simulations are performed on a grid identical to that Ghia et al. [5] used with 128 cells in horizontal and vertical direc-
tions (dr = L/128). The spatial discretisation is second-order accurate, the velocity coupling is achieved by the SIMPLE algo-
rithm, and the steady state is reached for a non-dimensional tolerance of 10�10 (see Eq. (31)).

4.2. Results

At first, WCSPH and ISPH are run at Re = 400 to examine the influence of spatial resolution and results are plotted in Fig. 5
along with FV data, which correspond to Ghia et al. [5]. Horizontal and vertical velocity component profiles from WCSPH for
dr = L/40 look unrealistic. Higher resolutions produce more realistic results but still far from FV data (see Fig. 5(a) and (c)). On
the other hand, ISPH gives a good estimation of both horizontal and vertical velocity components, even with the lowest res-
olution (dr = L/40) (see Fig. 5(b) and (d)).

Next, the Reynolds number is increased to 1000 and the initial particle distance dr between the closest neighbouring par-
ticles is L/20, L/40, L/80, L/120, L/160, L/200 and L/240. Horizontal and vertical velocity components depending on the initial
particle distributions are plotted in Fig. 6 against Ghia et al. and FV data (dr = L/128).

Again, WCSPH shows significant influence of the resolution or initial particle distribution, with results for the coarser
cases dr = L/20 and L/40 being very far from the FV profiles (see Fig. 6(a) and (c)). With WCSPH, the wall boundary layers
are significantly thicker and this leads to severely underestimated velocity profile extremes. It is as if the viscosity was being
strongly increased for coarser resolutions. This may be attributed to the random motion of particles (‘‘wobble” due to large
pressure fluctuations) which enhances momentum diffusion in a Brownian-like fashion. Animations show that this ‘‘wobble”
is much smaller with ISPH than WCSPH. Moreover with WCSPH, the central solid body rotation effect does not seem to be
captured properly (see Fig. 6(a)). Indeed, profiles at dr = L/160, dr = L/200, dr = L/240 fall almost on top of each other, which
may indicate that there is an asymptotic convergence, but not towards the FV solution, as proved by the difference in the
position of the minimum of the horizontal velocity component for WCSPH and FV. On the other hand, ISPH shows a much
smoother pattern (see Fig. 6(b) and (d)) with regular but perhaps slow asymptotic convergence towards the accurate results
of Ghia et al. [5]. The l1-norm applied to the vertical and horizontal velocity components is used to perform the error analysis,
rather than the classical l2-norm. As no analytical solution is available for this case, the data obtained by a very fine FV sim-
ulation (dr = L/1024) are used as a reference. The l1-norms of the error on both velocity components are plotted against par-
ticle spacing dr in Fig. 7 for WCSPH, ISPH and FV. Spatial order of accuracy can be estimated as of the order of unity for both
WCSPH and ISPH, and it is of second order for FV, as expected. While the symmetrical formulation of SPH may lead one to
expect second-order accuracy, this is clearly not the case for several reasons. This flow is dominated by viscous forces and
boundary conditions. The latter can seriously decrease the order and the discretisation of the Laplacian operator, whether by
Eq. (27) or (28), is rather crude. Further effects that reduce the order are for instance the irregular distribution of the particles
(as opposed to the initial square lattice distribution [1]) and the ratio of smoothing length to particle spacing, see [18] for
instance. A full analysis of these issues is beyond the scope of this paper. Pressure profiles are plotted in Fig. 8; comparisons



Fig. 5. 2-D SPH lid-driven cavity flow velocity profiles at t = 52.0 against Ghia et al. [5] and converged FV data for Re = 400. Spatial resolution influence.
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of axial variation of pressure for both SPH methods with FV are shown in Fig. 8(a) and of diagonal variation of pressure for
ISPH with FV in Fig. 8(b). The pressure field is very noisy for WCSPH in contrast to the ISPH pressure field, which is very
smooth. Moreover, ISPH isobars show a trend very close to FV. Velocity vectors are now compared. WCSPH and ISPH simu-
lations both capture the secondary flows observed at this Reynolds number in the left and right bottom corners of the cavity.
Fig. 9 (left) gives a zoom of the left top corner for WCSPH (Fig. 9(a)), ISPH (Fig. 9(c)) and FV (Fig. 9(e)). However, the velocity
in the first layer of fluid particles is very non-smooth when predicted by WCSPH. Fig. 9 (right) gives a zoom of the right bot-
tom corner vortex for WCSPH (Fig. 9(b)), ISPH (Fig. 9(d)) and FV (Fig. 9(f)), where unit vectors are used to show direction. The
center of the right secondary vortex is well predicted by all methods: WCSPH (0.85; 0.10), ISPH (0.87; 0.11) and FV (0.86;
0.11). Once again, the WCSPH wall treatment is not smooth. Overall, ISPH shows more coherent velocity fields while WCSPH
exhibits small scale instabilities mentioned earlier.

The time step and CPU time for the case of Re = 1000 are indicated in Table 1. The simulations were carried out on a Intel
(R) PENTIUM D CPU 3.2 GHz with 2.0 G RAM with 32 bits.

The longer CPU time in WCSPH can be explained by the fact that high numerical speed of sound required to prevent the
appearance of a void in the cavity center requires the use of a very small time step. Such voids had also appeared in the



Fig. 6. 2-D SPH lid-driven cavity flow velocity profiles at t = 52.0 against Ghia et al. [5] and converged FV data for Re = 1000. Spatial resolution influence.
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recirculation behind hills or in the recirculation past a square cylinder presented below, inducing the use of a Mach number
(Ma) of 0.01 in most applications rather than Ma = 0.1 as mentioned in [8].

5. Bluff body

Separated flows often take place in engineering problems as seen, for example, in flows over steps and fences, and around
bluff bodies [16]. This is therefore a fundamental test case. Laminar simulations around a bluff body are attempted here at
two different Reynolds numbers (Red = 20 and 100), based on the bulk velocity and the size of the square cylinder. WCSPH
and ISPH are again compared with FV (STAR-CD).

5.1. Simulation conditions

The geometry of the configuration is based on Kim et al. [10] and shown in Fig. 10. All parameters are normalised here like
in the lid-driven cavity flow case. The square cylinder edge size d, the mean bulk velocity at the inlet U0 and the density q are



Fig. 7. Lid-driven cavity flow error estimation versus spatial resolution influences for WCSPH, ISPH and FV for Re = 1000.

Fig. 8. 2-D SPH lid-driven cavity flow pressure profiles at t = 52.0 against to converged FV for Re = 1000. (a) Axial variation of pressure profile at Z = L/2,
WCSPH (dr = L/160), ISPH (dr = L/160) and FV (dr = L/128). (b) Diagonal variation of pressure profiles between ISPH and FV.
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set to unity. The Reynolds number based on the mean bulk velocity and the width of the cylinder is small enough to ensure
laminar flow (Red = 20 and 100). The cylinder is located centrally in between two flat plates a distance of 5d apart; the up-
stream end of the domain is 3d from the cylinder and the length to the downstream end Ld = 28d for Red = 20 and Ld = 98d for
Red = 100, to ensure that the flow re-develops downstream of the cylinder. Periodic inflow–outflow boundary conditions are
imposed, the flow being driven by a force relative to the prescribed mean bulk velocity at the inlet, which allows constant
flow rate. In total, 69,748 particles are used (63,018 fluid particles, 1362 edge particles and 5368 dummy particles) for both
WCSPH and ISPH at Red = 20. Initially, the particles are regularly distributed with a distance dr = d/20. For Red = 100, the total
of 222,348 particles are used (201,618 fluid particles, 4162 edge particles and 16,568 dummy particles) for both WCSPH and
ISPH with the initial particle distribution dr = d/20. In terms of SPH parameters, the same fourth order of kernel as for cavity
tests, associated to a smoothing length ratio h/dr of 1.3, is used. Running WCSPH with the usual numerical speed of sound
value leads to the appearance of a void downstream of the cylinder, this phenomenon having also been observed for the lid-
driven cavity case (see Section 4). In ISPH in contrast, this void does not occur. The numerical speed of sound is set at



Fig. 9. 2-D SPH lid-driven cavity flow uniform velocity magnitude at t = 52.0 against to converged FV for Re = 1000. (a,b) WCSPH (dr = L/160, non-smooth
pattern) (dr = L/128); (c,d) ISPH (dr = L/160, smooth pattern); (e,f) FV. (a,c,e) Velocity vectors at the top left corner of the cavity. (b,d,f) Secondary flow at the
bottom right corner.
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c0 = 100U0 for WCSPH. No experimental data or analytical formulae are available for this case to our knowledge. SPH results
here are thus compared to data obtained by FV (STAR-CD) with a very fine uniform mesh spacing equal to dr = d/80. The first
case at Red = 20 is run in steady motion with a central difference scheme for convection. The mesh has 1,017,600 cells. The
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Fig. 10. Geometry of the 2-D bluff body.

Table 1
Comparisons of the 2-D lid-driven cavity flow CPU time for Re = 1000 with dr = L/160 for all methods, up to time t = 52.0 for the SPH cases

Methods ISPH WCSPH FV

Time step: dt 0.325 � 10�2 0.325 � 10�4 Steady
CPU time (h) 19.5 179 0.4

Fig. 11. Comparisons of horizontal velocity magnitude contours at t = 322.0 with for SPH (dr = d/20) and FV (dr = d/80) for Red = 20. A zoom from X/d = �4 to
X/d = 10 is presented. (a) WCSPH results against FV contours. (b) ISPH results against FV contours (WCSPH and ISPH in dashed lines and FV in solid lines).
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second Reynolds number of 100 is treated as a transient flow, with PISO to solve the velocity-coupling and an Euler implicit
time stepping scheme. This combination (PISO and Euler) has been proven to be second-order accurate in time [17]. A central
difference scheme is used for convection. The time step is then 0.0025 and the mesh has 3,193,600 cells.

5.2. Results

First of all, the results for Red = 20 are plotted in Fig. 11 for the dimensionless horizontal velocity magnitude contour. Both
SPH results at the physical time of t = 322.0 are compared to the converged FV results. Solid lines correspond to FV results
and dashed lines to both SPH methods (WCSPH against FV in Fig. 11(a) and ISPH against FV in Fig. 11(b)). The trend observed
for the cavity flow also holds here, i.e., ISPH shows a smoother velocity field than WCSPH. Agreement of ISPH with FV is
clearly quite close while WCSPH is less good. The pressure contour and profile at the center of the channel along the axial
direction are respectively depicted in Figs. 12 and 13. WCSPH shows again scattered results (see the highly distorted isobar
patterns for WCSPH in Fig. 12(a)) while ISPH shows smoother ones. The time-averaged pressure drag coefficient is calculated
for the SPH method and steady state pressure drag coefficient for FV. WCSPH gives 14.56, ISPH 3.48 and FV 5.53. The origin of
the difference has not been resolved and requires further investigation.

The Reynolds number of Red = 100 is high enough for the flow to shed, but small enough to keep it 2-D and laminar. The
frequency f of the vortex shedding of WCSPH and ISPH is compared to FV’s one. The Strouhal number St = fd/U0 is calculated.
WCSPH, ISPH and FV, respectively, give a period of TWCSPH = 5.20, of TISPH = 4.40 and of TFV = 4.00, and StWCSPH = 0.19,
StISPH = 0.23 and StFV = 0.25. The dimensionless horizontal velocity magnitude contour is plotted for each method (see Fig.
14) when the flow is fully developed in all simulations. Four instants are considered, 0.25T, 0.50T, 0.75T and 1.00T, where
T is the period of the shedding for each method, i.e., T = TWCSPH for WCSPH, T = TISPH for ISPH, T = TFV for FV. Both SPH methods
show the shedding, but WCSPH one is not as pronounced as it should be, compared to FV. Former tests with dr = d/10 showed
a void downstream of the cylinder, which is smaller with dr = d/20. On the other hand, ISPH shows a behaviour similar to
FV’s, the shedding looking good. The pressure time-averaged drag coefficient calculated for WCSPH, ISPH and FV are respec-
Fig. 12. Comparisons of instantaneous pressure contours around the square cylinder at the physical time t = 322.0 for SPH for Red = 20.

Fig. 13. Comparisons of time-averaged centerline pressure distributions from WCSPH (M), ISPH (N) and FV methods (s) for Red = 20.



Fig. 14. Comparisons of WCSPH, ISPH and FV horizontal velocity contours at 4 various instants depending on their own shedding period: (a) 0.25T, (b) 0.5T,
(c) 0.75T and (d) 1.00T, where T = TWCSPH for WCSPH, T = TISPH for ISPH and T = TFV for FV.
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tively 1.09, 6.30 and 3.23 and the lift coefficients are of �0.19, �0.04 and of 0.00, respectively. A possible explanation for the
erroneous value of the drag and lift for WCSPH is the strong scattering in the pressure due to its calculation by the equation
of state, which makes difficult the prediction of quantities deriving from the pressure. The CPU time for all methods is given
in Table 2 with same spatial discretisation dr = 1/10 for SPH and FV. The small CPU time for ISPH is due to the small number
of iterations needed for convergence of the pressure Poisson equation in this case.

6. Dam breaking

Dam-break flows are an important practical problem in civil engineering and have long been the subject of the analytical
and experimental study [20]. In terms of numerical study, it highlights free surface and impact against wall boundary
conditions.



Table 2
CPU time for the bluff body flow at Red = 100 with dr = 1/10 at the same physical time t = 520.0

Methods ISPH (dr = d/10) WCSPH (dr = d/10) FV (dr = d/10)

Time step: dt 0.26 � 10�1 0.52 � 10�3 0.5 � 10�1

CPU time (h) 13.0 305.5 42.9
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Two sets of simulations are presented here, the first deals with a dry bed and the second is with a wet bed. The wet bed
case is based on an experimental configuration [9]. As mentioned in Section 3, several choices for turbulence closures in the
code are available. In this section, all the simulations are based on the k–� model [7] and comparisons are made between
WCSPH and ISPH.

6.1. Simulation conditions on dry bed

The geometry of a 2-D dam break is shown in Fig. 15 with the dimensions of Hw, Lw, Hf and Lf defined as the wall height
and width, and the water height and width, respectively. The height of both side walls is set four times higher than the initial
water height. In total, 7250 particles are used (80 � 40 fluid particles, 802 edge particles, 3248 dummy particles). Initially,
the particles are regularly distributed with the closest neighbour distance being 1/80Hf. In terms of SPH parameters, a fourth
order of kernel and smoothing length ratio h/dr of 1.3 are again used.

An approximation of the maximum fluid velocity �umax is estimated from the theory of characteristic curves [20] as
z

x

Fictitious dam

g

wL

Lf = 0.1

= 0.4

= 0.2

Hf

= 0.8

Hw

Fig. 15. Configuration of a dam breaking on dry bed (unit: m).

Fig. 16. Dam-breaking case. Pressure pattern at t = 0.186 s: (a) WCSPH and (b) ISPH.



Fig. 17. Dam-breaking case. Pressure pattern at t = 0.278 s.
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�umax ¼ 2
ffiffiffiffiffiffiffiffi
gHf

p
ð34Þ
where g and Hf are respectively gravity and initial water height. This gives a maximum fluid velocity is 2.8 m s�1 and numer-
ical speed of sound c0 in WCSPH is set 10 times higher. Initially, pressure for all fluid particles (denoted by pa) is given by a
hydrostatic law:
pa ¼ qagðHf � zaÞ ð35Þ
Fig. 18. Dam-breaking case. Pressure pattern at t = 0.650 s.

Fig. 19. Dam-breaking case. Pressure pattern at t = 1.860 s.
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6.2. Results on dry bed

Pressure fields for WCSPH and ISPH are compared at a given time (see from Figs. 16–19). To focus on the fluid field, the
side walls are cut at 0.3 m height in the figures. In terms of surface shape, these two approaches show very similar behaviour
until the reflection of the wave on the opposite wall, then there are some small differences with more splash in ISPH (Fig. 18),
and a slightly different reflected wave speed (Fig. 19). Regarding the pressure fields, again ISPH significantly reduces the
pressure noise in comparison with WCSPH.

6.3. Simulation conditions on wet bed

In the experiment reported by Jánosi et al. [9], various water depths d were examined by keeping the dam-break height d0

as 0.15 m and the gate velocity of 1.5 m s�1. However, in the numerical simulation only one case where the water depth d is
0.018 m was chosen and compared (Fig. 20). The maximum fluid velocity is set as 1.25 m s�1, to give a lower limit to time
step without violating the Courant condition. Increasing this velocity had negligible influence in the result (although a smal-
ler time step was needed). In total, 21,805 particles are used (17,805 fluid particles, 792 edge particles, 3208 dummy parti-
cles). Initially, the particles are regularly distributed with the closest neighbour distance being dr = 0.002 m. In terms of SPH
parameters, a fourth order of kernel and smoothing length ratio h/dr of 1.5 are used. Unlike the previous case, pressure is
initially set at zero for all fluid particles.
Gate

d0

= 0.15

0.38 0.66

d = 0.018
x

z

Fig. 20. Configuration of a dam breaking on wet bed (unit: m).

Fig. 21. Free-surface evolution for WCSPH and ISPH. Comparisons of the surface shape with experimental data from Jánosi et al. [9] (h) and Stansby et al.
[20] (N). From top to bottom the physical time is 0.156 s, 0.219 s, 0.281 s, 0.343 s, 0.406 s, 0.468 s and 0.531 s. Note equivalent times for [20] are 0.206 s and
0.28 s.
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6.4. Results on wet bed

The results shown in Fig. 21 are mainly to compare the surface shape. The initial stages of surface shapes in WCSPH and
ISPH are different from experiment [9] although the initial mushroom shapes were observed and predicted in [20]. With al-
most instantaneous dam removal, these shapes are also shown in Fig. 21 for earlier times. In [9] the plate is said to be re-
moved with a speed of 1.5 m s�1 which would take a time 0.1 s. Due to inertia effects the time will inevitably be longer
and this could explain the difference between the experimental results in [9,20]. In general, WCSPH and ISPH show similar
patterns of surface shape except there are more splashes and voids in ISPH. The voids in ISPH (the last three figures from the
bottom in Fig. 21) are also observed in the experiment. In terms of CPU time, WCSPH takes about 55 min while ISPH does
about 15 min. Both methods produce quite realistic representation of the various phenomena: the detaching and breaking
front wave which then rebounds as a second breaking wave and enclosing a large void. Both SPH methods show some per-
turbations at this location. This last example does not allow one to conclude as to whether one or the other solver is superior,
but shows that both are equally robust for representation of violent surface motion.

7. Conclusions

In this paper, the 2-D applications of a lid-driven cavity flow, a flow around a bluff body located between two flat plates
and a dam-breaking case, have been simulated in order to compare WCSPH and ISPH. Overall, ISPH yields much more reliable
results than WCSPH; velocity and pressure fields in particular are smoother in every case. For the lid-driven cavity for in-
stance, although the error shows a first-order scheme convergence rate, on the coarser resolutions ISPH approaches a flow
field that is much closer to the exact solution than the WCSPH results which are very noisy and seem to correspond to a
much more viscous flow regime. At higher Re number and with a finer discretisation, the WCSPH is improved and is closer
to ISPH. However, short range and very intense pressure fluctuations produced by WCSPH in the instantaneous fields are so
large that they mask the mean pressure variation. This is also generally true for unsteady pressure distributions in the bluff
body and dam-break problems, although the surface profiles for the dam-break case were in close agreement. In all cases, the
CPU time required by ISPH is shorter, by about a factor of 2–20 depending on the cases.

Further work can be undertaken to improve the ISPH method. Neumann pressure conditions at the wall using dummy
particles require further study and comparison with the mirror-particle technique or direct modification of the Laplacian
operator matrix as in finite elements. The simulation time could be reduced by purely numerical developments such as
pre-conditioning for the linear solver.
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[17] M. Perić, Confidential communication, 2004.
[18] N.J. Quinlan, M. Basa, M. Lastiwka, Truncation error in mesh-free particle methods, Int. J. Numer. Methods Eng. 66 (2006) 2064–2085.
[19] S. Shao, E.Y.M. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Adv. Water Resour. 26 (2003)

787–800.
[20] P.K. Stansby, A. Chegini, T.C.D. Barnes, The initial stages of dam-break flow, J. Fluid Mech. 374 (1998) 407–424.
[21] R. Temam, Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires II, Qrch. Ration. Mech. Anal. 33

(1969) 377–385.
[22] D. Violeau, One and two-equations turbulent closures for smoothed particle hydrodynamics, in: S.-Y. Liong, K.-K. Phoon, V. Babovitch (Eds.), 6th

International Conference on Hydroinformatics, EDF R&D, World Scientific Publishing Company, Singapore, 2004.



8436 E.-S. Lee et al. / Journal of Computational Physics 227 (2008) 8417–8436
[23] D. Violeau, User’s guide for the SPARTACUS-2D V1P0 code: Lagrangian modelling of 2-dimensional laminar and turbulent flows with SPH method,
Technical report, 2004.

[24] D. Violeau, R. Issa, Numerical modelling of complex turbulent free surface flows with the SPH method: an overview, Int. J. Numer. Methods Fluids 53
(2) (2007) 277–304.

[25] H.A. Van Der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, S.J. Sci. Stat. Comput.
13 (1992) 631–644.


	Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method
	Introduction
	Governing equations and numerical schemes
	Weakly compressible algorithm
	Truly incompressible algorithm

	SPH formulations
	Core of SPH
	Pressure Poisson equation
	Boundary conditions
	The use of dummy particles
	Surface particle tracking


	Lid-driven cavity flow
	Simulation conditions
	Results

	Bluff body
	Simulation conditions
	Results

	Dam breaking
	Simulation conditions on dry bed
	Results on dry bed
	Simulation conditions on wet bed
	Results on wet bed

	Conclusions
	Acknowledgement
	References


